

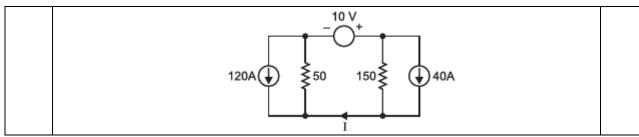
					Pri	ntec	l Pa	ge: 1	of 3
				Sub	ject	Coc	de: I	KEE	101
Roll No:									

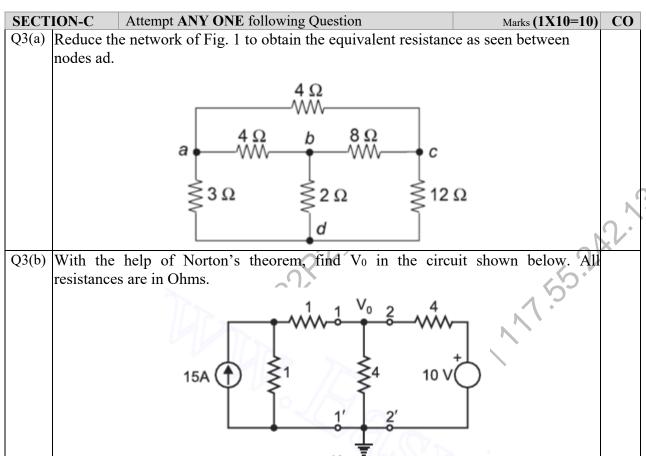
BTECH (SEM I) THEORY EXAMINATION 2021-22 BASIC ELECTRICAL ENGG

Time: 3 Hours Total Marks: 100

Notes:

- Attempt all Sections and Assume any missing data.
- Appropriate marks are allotted to each question, answer accordingly.


SECT	ION-A	Attempt All of the following Questions in brief	Marks (10X2=20)	CO
Q1(a)	Define the	e expression for form factor and peak factor		
Q1(b)	State Kirc	hoff's law.		
Q1(c)	Define ele	ectromotive force		
Q1(d)	Define po	wer factor		
Q1(e)	Write the	statement of superposition theorem		
Q1(f)	What is th	ne function of commutator in DC generator		
Q1(g)	What is K	VA rating of a transformer		
Q1(h)	Draw the	no load phasor diagram of a transformer		
Q1(i)	Define a s	slip of an induction motor		
Q1(j)	What is ca	alled synchronous speed in AC machines		


 Q2(a) (i) Derive the emf equation of a transformer (ii) Derive the condition for maximum efficiency in single phase transformer Q2(b) i) List all the important parts of a D.C. Motor and explain the importance of each. ii) Calculate the emf generated by 4 pole wave wound generator having 65 slots with 12 conductors per slot when driven at 1200 rpm. The flux per pole is 0.02 wb. Q2(c) Using Thevenin theorem, find current in 1 Ω resistor in the circuit shown in figure below: 	SECT	ION-B	Attempt ANY THREE of the following Questions Mar	ks (3X10=30)	CO
 Q2(b) i) List all the important parts of a D.C. Motor and explain the importance of each. ii) Calculate the emf generated by 4 pole wave wound generator having 65 slots with 12 conductors per slot when driven at 1200 rpm. The flux per pole is 0.02 wb. Q2(c) Using Thevenin theorem, find current in 1 Ω resistor in the circuit shown in figure below: 	Q2(a)				
ii) Calculate the emf generated by 4 pole wave wound generator having 65 slots with 12 conductors per slot when driven at 1200 rpm. The flux per pole is 0.02 wb. Q2(c) Using Thevenin theorem, find current in 1 Ω resistor in the circuit shown in figure below:		(ii) Derive	e the condition for maximum efficiency in single phase transfor	mer	
with 12 conductors per slot when driven at 1200 rpm. The flux per pole is 0.02 wb. Q2(c) Using Thevenin theorem, find current in 1 Ω resistor in the circuit shown in figure below:	Q2(b)	/	· · ·		Χ'
Q2(c) Using Thevenin theorem, find current in 1 Ω resistor in the circuit shown in figure below:					
below:					
2Ω 3Ω	Q2(c)		evenin theorem, find current in 1 Ω resistor in the circuit shown	in figure	
$\begin{array}{c c} & & & & & & \\ & & & & & & \\ & & & & $					
2 \(\Omega \) 3 \(\Omega \)			1 A		
• • • • • • • • • • • • • • • • • • •			2Ω 3Ω		
			+ W + W +		
			_		
4∨ 			⁴ ∨ ⁺ −		
Q2(d) Use nodal analysis to find the voltage across and current through 4 Ω resistor	O2(d)	Use nodal	I analysis to find the voltage across and current through 4 Ω res	istor	
in Figure given below:				15051	
4Ω					

 			\$ 0.0		
^{2Ω} 8Ω (↑) 2A					
±2∨			₊₂ ∨		
O2(a) Has superposition theorem to find support Lin the significance in Figure heless		1			
Q2(e) Use superposition theorem to find current I in the circuit shown in Figure below. All resistances are in ohms.	$\Omega_{2}(2)$	I Igo gue a	magitian theorem to find assessed I in the aircrait charge in Figure	halaw	

Printed Page: 2 of 3
Subject Code: KEE101
Roll No:

BTECH (SEM I) THEORY EXAMINATION 2021-22 BASIC ELECTRICAL ENGG

		Ω .		
SECT	ION-C	Attempt ANY ONE following Question	Marks (1X10=10)	CO
Q4(a)	A series R	L - L - C circuit consists of $R = 1000$ Ohm, $L = 100$	mH and $C = 10 \mu F$.	
	The applie	ed voltage across the circuit is 100 V.		
	(i) Find th	e resonant frequency of the circuit.		
	(ii) Find the quality factor of the circuit at the resonant frequency.		icy.	
	(iii) At what angular frequencies do the half power points occur?		ır?	
	(iv) Calcu	late the bandwidth of the circuit.		
Q4(b)	Three imp	redances of $(70.7 + j 70.7)$ Ohm, $(120 + j 160)$ Ohm	and (120 + j 90) Ohm	
	are conne	cted in parallel across a 250 V supply. Determine (i)	admittance of the	
	circuit (ii)	supply current and (iii) circuit power factor.		

SECT	ION-C Attempt ANY ONE following Question	Marks (1X10=10)	CO
Q5(a)	A transformer on no-load has a core loss of 50W, draws a cu	rrent of 2A and has an	
	induced emf of 230V. Determine the no-load power factor,	core loss current and	
	magnetizing current. Also, calculate the no-load circu	it parameters of the	
	transformer. Neglect winding resistance and leakage flux.	_	
Q5(b)	Explain the performance of principal of operation of single ph	ase transformer.	

					Pri	inted	l Pa	ge: 3	of 3	į
				Sub	ject	Coc	de: I	KEE	101	
Roll No:										

BTECH (SEM I) THEORY EXAMINATION 2021-22 BASIC ELECTRICAL ENGG

SECT	ION-C	Attempt ANY ONE following Question	Marks (1X10=10)	CO				
Q6(a)	A 4-pole g	generator with 400 armature conductors has a useful	flux of 0.04Wb per					
	pole. Wha	t is the	_					
emf produced if the machine is wave wound and runs at 1200rpm? What must be the								
speed at which the machine should be driven to generate the same emf if machine is								
lap wound?								
Q6(b)	Q6(b) An 8-pole, 400V shunt motor has 960 wave connected armature conductors. The full							
	load armature current is 40A and flux per pole is 0.02Wb. The armature resistance is							
	0.1Ω and the contact drop is 1V per brush. Calculate the full load speed of the							
	motor.							
SECT	ION-C	Attempt ANY ONE following Question	Marks (1X10=10)	CO				

SECTION-C	Attempt ANY ONE following Question Marks (1X10=10)	CO
	lain the slip torque characteristics of the three-phase induction motor	
	e voltage applied to the stator of a three phase, 4 pole induction motor has	
	ncy of 50 Hz. Th frequency of the emf induced in the rotor is 15.5 Hz.	
	nine the slip and speed at which motor is running.	
	te short notes on MCB and MCCB	
(11) Wr	ite short notes on characteristics of batteries.	<u>Q.•</u>
	OP22P2	X
	22 08:K9:K9	
	0.12. 0.2. 0.1. 0.1. 1.2. 0.2. 0.1. 1.2. 1.2	